廣州數(shù)據(jù)分析培訓(xùn)班 2022-08-18 09:39:45
學(xué)校簡(jiǎn)介
十?dāng)?shù)年來(lái),博為峰始終堅(jiān)守教學(xué)品質(zhì),真誠(chéng)服務(wù)學(xué)員,發(fā)展至今,每年畢業(yè)學(xué)員10000+,率長(zhǎng)期保持在99%以上。博為峰已先后為7000多家國(guó)內(nèi)外企業(yè)輸送軟件測(cè)試骨干及軟件技術(shù)精英,未來(lái)還將根據(jù)產(chǎn)業(yè)變遷和技術(shù)革新開(kāi)設(shè)更多的緊缺人才實(shí)訓(xùn)項(xiàng)目:幫助更多的應(yīng)屆畢業(yè)生和職場(chǎng)新人找到滿意,實(shí)現(xiàn)職業(yè)夢(mèng)想;幫助更多的用人單位輕松招到可用之才,推動(dòng)企業(yè)發(fā)展和產(chǎn)業(yè)進(jìn)步。
課程簡(jiǎn)介
數(shù)據(jù)分析師的定義和職業(yè)發(fā)展前景
數(shù)據(jù)分析師是指專門從事數(shù)據(jù)搜集、整理、分析,并依據(jù)數(shù)據(jù)做出行業(yè)研究、評(píng)估和預(yù)測(cè)的專業(yè)人員。阿里巴巴研究員薛貴榮曾表示,“數(shù)據(jù)分析師就是一群玩數(shù)據(jù)的人,玩出數(shù)據(jù)的商業(yè)價(jià)值,讓數(shù)據(jù)變成生產(chǎn)力?!?br /> 隨著數(shù)字經(jīng)濟(jì)的高速發(fā)展,國(guó)內(nèi)數(shù)據(jù)分析人才出現(xiàn)了供不應(yīng)求的狀況,數(shù)據(jù)分析師更是被媒體稱為“未來(lái)發(fā)展?jié)摿Φ穆殬I(yè)之一”。有媒體報(bào)道,美國(guó)的數(shù)據(jù)分析師平均年薪高達(dá)17.5萬(wàn)美元,而國(guó)內(nèi)互聯(lián)網(wǎng)公司,數(shù)據(jù)分析師的薪酬可能要比同一個(gè)級(jí)別的其他職位高20%至30%,且頗受企業(yè)重視。
什么是大數(shù)據(jù)分析
課程內(nèi)容
課程大綱 | 課題名稱 | 課程內(nèi)容 |
前導(dǎo)基礎(chǔ) | 數(shù)據(jù)分析入門 |
1、數(shù)據(jù)分析入門 2、數(shù)據(jù)分析的意義 3、數(shù)據(jù)分析的流程控制 4、數(shù)據(jù)分析的思路與方法 |
邏輯為先—XMIND |
1、xmind簡(jiǎn)介與基本使用 2、學(xué)習(xí)方法課堂案例 3、滴答拼車實(shí)戰(zhàn)演練 4、其他思維導(dǎo)圖介紹 |
|
專業(yè)展現(xiàn)—PPT |
1、專業(yè)展現(xiàn)——PPT 2、基本簡(jiǎn)介 3、幾個(gè)不得不說(shuō)的真相 4、經(jīng)驗(yàn)分享 5、實(shí)戰(zhàn)動(dòng)畫 |
|
數(shù)據(jù)分析工具安裝與環(huán)璄配置 |
1、Excel工具的安裝、配置與環(huán)璄測(cè)試 2、Power BI工具的安裝、配置與環(huán)璄測(cè)試 3、Tableau工具的安裝、配置與環(huán)璄測(cè)試 4、MySQL數(shù)據(jù)庫(kù)的安裝、配置與環(huán)璄測(cè)試 5、SPSS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測(cè)試 6、SAS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測(cè)試 7、Python開(kāi)發(fā)工具的安裝、配置與開(kāi)發(fā)環(huán)璄測(cè)試 |
|
Linux基礎(chǔ)應(yīng)用之大數(shù)據(jù)必知必會(huì) |
1、虛擬機(jī)的安裝配置 2、虛擬機(jī)網(wǎng)絡(luò)配置 3、安裝Linux 4、利用SSH連結(jié)Linux 5、Linux基礎(chǔ)命令 6、Linux系統(tǒng)管理 |
|
數(shù)據(jù)分析的Python語(yǔ)言基礎(chǔ) |
1、Python課程的目的 2、使用JupyterLab 3、python數(shù)據(jù)類型 4、元組、列表、字典 5、python分支結(jié)構(gòu) 6、python字符串處理+隨機(jī)函數(shù) 7、pthon循環(huán)結(jié)構(gòu) 8、python面向過(guò)程函數(shù)操作 9、python面向?qū)ο? |
|
問(wèn)題定義與數(shù)據(jù)獲取 | 數(shù)據(jù)分析項(xiàng)目流程 |
1、問(wèn)題界定 2、問(wèn)題拆分 3、指標(biāo)確定 4、數(shù)據(jù)收集 5、報(bào)告方案 6、趨勢(shì)預(yù)測(cè) 7、數(shù)據(jù)分析 8、趨勢(shì)預(yù)測(cè) 9、報(bào)告方案 |
問(wèn)題的定義 |
1、邊界:明確問(wèn)題的邊界 2、邏輯:確定業(yè)務(wù)的關(guān)鍵指標(biāo)和邏輯 3、定性分析與定量分析 |
|
分析問(wèn)題的模型 |
基于經(jīng)典的模型 1、5W2H 2、SWORT 3、4P管理模型 4、CATWOE 5、STAR原則、波士頓5力模型 基于業(yè)務(wù)的模型 1、用戶畫像 2、 銷售影響因素 3、市場(chǎng)變化因素 4、AARRR流量模型 5、金定塔思考方法 |
|
數(shù)據(jù)清洗與處理 |
1、數(shù)據(jù)科學(xué)過(guò)程 2、數(shù)據(jù)清洗定義 3、數(shù)據(jù)清洗任務(wù) 4、數(shù)據(jù)清洗流程 5、數(shù)據(jù)清洗環(huán)境 6、數(shù)據(jù)清洗實(shí)例說(shuō)明 7、數(shù)據(jù)標(biāo)準(zhǔn)化 8、數(shù)據(jù)格式與編碼 9、數(shù)據(jù)清洗常用工具 10、數(shù)據(jù)清洗基本技術(shù)方法 11、數(shù)據(jù)抽取 12、數(shù)據(jù)轉(zhuǎn)換與加載 |
|
內(nèi)部數(shù)據(jù)的獲取 |
1、產(chǎn)品數(shù)據(jù) 2、用戶數(shù)據(jù) 3、行為數(shù)據(jù) 4、訂單數(shù)據(jù) |
|
外部公開(kāi)數(shù)據(jù) |
1、開(kāi)放網(wǎng)站 2、政務(wù)公開(kāi)數(shù)據(jù) 3、數(shù)據(jù)科學(xué)競(jìng)賽 4、數(shù)據(jù)交易平臺(tái) 5、行業(yè)報(bào)告 6、指數(shù)平臺(tái) |
|
Web網(wǎng)站數(shù)據(jù)抓取 |
1、財(cái)經(jīng)數(shù)據(jù)抓取 2、投資數(shù)據(jù)抓取 3、房產(chǎn)數(shù)據(jù)抓取 4、輿情數(shù)據(jù)抓取 5、娛樂(lè)數(shù)據(jù)抓取 6、新媒體數(shù)據(jù)抓取 |
|
數(shù)據(jù)查詢與提取 | SQL基礎(chǔ)操作 |
1、建庫(kù) 2、建表 3、建約束 4、創(chuàng)建索引 5、添加、刪除、修改數(shù)據(jù) |
利用SQL完成數(shù)據(jù)的預(yù)處理 |
1、缺失值處理:對(duì)缺失數(shù)據(jù)行進(jìn)行刪除或填充 2、重復(fù)值處理:重復(fù)值的判斷與刪除 3、異常值處理:清除不必要的空格和異常數(shù)據(jù) |
|
利用SQL進(jìn)行業(yè)務(wù)數(shù)據(jù)查詢 |
1、利用SQL進(jìn)行簡(jiǎn)單的業(yè)務(wù)數(shù)據(jù)查詢 2、利用SQL完成復(fù)雜條件查詢 3、利用多表關(guān)聯(lián)完成復(fù)雜業(yè)務(wù)查詢 4、利用嵌套子查詢完成復(fù)雜業(yè)務(wù)數(shù)據(jù)分析 |
|
高級(jí)SQL分析 |
1、聚合、分組、排序 2、函數(shù) 3、行列轉(zhuǎn)換 4、視圖與存儲(chǔ)過(guò)程 |
|
業(yè)務(wù)指標(biāo)統(tǒng)計(jì)分析 |
1、業(yè)務(wù)數(shù)據(jù)表關(guān)聯(lián)查詢及查詢 2、結(jié)果縱向融合 3、?常業(yè)務(wù)需求數(shù)據(jù)寬表構(gòu)建 4、應(yīng)??查詢處理復(fù)雜業(yè)務(wù) |
|
數(shù)理統(tǒng)計(jì)基礎(chǔ) | 數(shù)據(jù)分析的數(shù)學(xué)基礎(chǔ) |
1、計(jì)算和連續(xù)函數(shù)的性質(zhì) 2、導(dǎo)數(shù)/微分的概念和運(yùn)算法則 3、積分的概念和運(yùn)算法則 4、冪級(jí)數(shù)、泰勒級(jí)數(shù)、傅里葉級(jí)數(shù)、傅里葉變換 5、向量的概念和運(yùn)算 6、矩陣的轉(zhuǎn)置、乘法、逆矩陣、正交矩陣、SVD奇異值分解、特征值 7、行列式的計(jì)算和性質(zhì) 8、凸優(yōu)化 |
Python數(shù)據(jù)分析 | 基于Numpy庫(kù)的Python數(shù)據(jù)科學(xué)計(jì)算 |
1、創(chuàng)建數(shù)組 2、切片索引 3、數(shù)組操作 4、字符串函數(shù) 5、數(shù)學(xué)函數(shù) 6、統(tǒng)計(jì)函數(shù) |
基于Pandas庫(kù)的Python數(shù)據(jù)處理與分析 |
1、直方圖:探索變量的分布規(guī)律 2、條形圖:展示數(shù)值變量的集中趨勢(shì) 3、散點(diǎn)圖:表示整體數(shù)據(jù)的分布規(guī)律 4、箱線圖:表示數(shù)據(jù)分散性,中位數(shù) 5、提琴圖:分位數(shù)的位置及數(shù)據(jù)密度 6、回歸圖:尋找數(shù)據(jù)之間的線性關(guān)系 7、熱力圖:表未數(shù)值的大小或者相關(guān)性的高低 |
|
大數(shù)據(jù)分析 | HIVE大數(shù)據(jù)查詢平臺(tái)搭建 |
1、大數(shù)據(jù)概述 2、?數(shù)據(jù)集群 Hadoop 架構(gòu) 3、Hive開(kāi)發(fā)環(huán)璄搭建 |
HIVE與MySQL進(jìn)行數(shù)據(jù)交換 |
1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive 2、從Hive導(dǎo)出數(shù)據(jù)到MySQL |
|
HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢 |
1、Hive數(shù)倉(cāng) 2、HQL 數(shù)據(jù)查詢基礎(chǔ)語(yǔ)法 |
|
HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢 |
1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive 2、從Hive導(dǎo)出數(shù)據(jù)到MySQL |
|
HQL業(yè)務(wù)數(shù)據(jù)指標(biāo)統(tǒng)計(jì)分析 |
1、分區(qū)表 2、分桶表 3、關(guān)聯(lián)表 4、數(shù)據(jù)查詢 |
|
HQL海量數(shù)據(jù)查詢優(yōu)化 |
1、常?內(nèi)置函數(shù)及開(kāi)窗函數(shù) 2、特殊類型數(shù)組查詢?式 3、HQL 查詢語(yǔ)句優(yōu)化技巧 |
|
建模與數(shù)據(jù)挖掘 | 數(shù)據(jù)挖掘與分析算法 |
1、描述統(tǒng)計(jì) 2、相關(guān)分析 3、判別分析 4、方差分析 5、時(shí)間序列分析 6、主成分分析 7、信度分析 8、因子分析 9、回歸分析 10、對(duì)應(yīng)分析 11、列聯(lián)表分析 12、聚類分析 |
數(shù)據(jù)挖掘工具SPSS |
1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive 2、從Hive導(dǎo)出數(shù)據(jù)到MySQL |
|
HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢 |
1、課程規(guī)劃與簡(jiǎn)介 2、數(shù)據(jù)挖掘項(xiàng)目生命周期 3、簡(jiǎn)單的統(tǒng)計(jì)學(xué)基礎(chǔ) 4、用Modeler試手挖掘流程 5、數(shù)據(jù)挖掘的知識(shí)類型 6、商業(yè)分析基礎(chǔ)簡(jiǎn)介 7、信度分析 8、因子分析 9、回歸分析 10、對(duì)應(yīng)分析 11、列聯(lián)表分析 12、聚類分析 |
|
數(shù)據(jù)挖掘工具SAS |
1、SAS概述:SAS簡(jiǎn)介與教育版安裝 2、SAS概述:教育版基本使用 3、SAS編程基礎(chǔ) 4、SAS編程基礎(chǔ)7-循環(huán) 5、SAS數(shù)據(jù)集操作1-合并 6、SAS數(shù)據(jù)集操作2-排序與對(duì)比 7、SAS數(shù)據(jù)集操作3-查重與篩選 8、練習(xí)-斐波那契數(shù)列 9、練習(xí)-百元百雞問(wèn)題 |
|
人工智能預(yù)測(cè)算法 | 人工智能實(shí)戰(zhàn)十大預(yù)測(cè)數(shù)據(jù)算法 |
1、機(jī)器學(xué)習(xí)入門 2、sk-learn機(jī)器學(xué)習(xí)庫(kù) 3、十大預(yù)測(cè)算法原理與使用場(chǎng)景 4、算法調(diào)用、參數(shù)設(shè)置 5、特征選擇、特征工程 6、回歸預(yù)測(cè)模型實(shí)戰(zhàn) 7. 分類預(yù)測(cè)試模型實(shí)戰(zhàn) 8. 聚類模型實(shí)戰(zhàn) 9、集成學(xué)習(xí) 10、模型優(yōu)化 |
可視化商業(yè)報(bào)告撰寫 | 商業(yè)智能與可視化分析實(shí)戰(zhàn) |
案例-1:BI電商數(shù)據(jù)市場(chǎng)分析項(xiàng)目實(shí)戰(zhàn) 案例-2:BI電商數(shù)據(jù)客戶分析項(xiàng)目實(shí)戰(zhàn) 案例-3:BI可視化關(guān)于公司運(yùn)營(yíng)情況的相關(guān)分析 案例-4:基于Tableau的客戶主題對(duì)客戶進(jìn)行合理分群 案例-5:基于Tableau的營(yíng)銷主題分析如何衡量媒體的營(yíng)銷價(jià)值 案例-6:基于Tableau的保公司索賠情況分析 |
數(shù)據(jù)可視化報(bào)告撰寫 |
1、數(shù)據(jù)可視化的概念 2、 數(shù)據(jù)可視化的意義 3、 數(shù)據(jù)可視化的對(duì)比 4、 數(shù)據(jù)可視化的分類 5、數(shù)據(jù)可視化圖表舉例 6、 數(shù)據(jù)可視化應(yīng)用領(lǐng)域 7、數(shù)據(jù)可視化步驟 8、 數(shù)據(jù)可視化工具梯度 9、圖表呈現(xiàn)流程 10、數(shù)據(jù)報(bào)告撰寫 |
|
實(shí)戰(zhàn):O2O電商平臺(tái)功能優(yōu)化效果評(píng)估及可視化數(shù)據(jù)分析報(bào)告撰寫 |
1、了解電商業(yè)務(wù)背景 2、以客戶分析為應(yīng)用場(chǎng)景,對(duì)數(shù)據(jù)進(jìn)行加載、清洗、分析及模型建立 3、以貨品分析為應(yīng)用場(chǎng)景,針對(duì)品類銷售及商品銷售進(jìn)行分析 4、以流量分析為應(yīng)用場(chǎng)景,針對(duì)流量渠道及關(guān)鍵詞做有效分析 5、根據(jù)業(yè)務(wù)實(shí)際背景做輿情分析 6、將分析結(jié)果及建議制成報(bào)告進(jìn)行發(fā)布 |
|
商業(yè)分析項(xiàng)目實(shí)戰(zhàn) | 五大商業(yè)項(xiàng)目實(shí)戰(zhàn) |
商業(yè)項(xiàng)目實(shí)戰(zhàn)01:電商數(shù)據(jù)分析——分析方式之漏斗模型及數(shù)據(jù)量化 商業(yè)項(xiàng)目實(shí)戰(zhàn)02:電商用戶行為與營(yíng)銷模型實(shí)戰(zhàn) 商業(yè)項(xiàng)目實(shí)戰(zhàn)03:金融風(fēng)控模型的構(gòu)建與分析實(shí)戰(zhàn) 商業(yè)項(xiàng)目實(shí)戰(zhàn)04:展會(huì)電話邀約項(xiàng)目數(shù)據(jù)分析實(shí)戰(zhàn) 商業(yè)項(xiàng)目實(shí)戰(zhàn)05:零售行業(yè)數(shù)據(jù)分析 |
軟件測(cè)試行業(yè)沒(méi)前途?讓大數(shù)據(jù)告訴你實(shí)情
廣州有哪些正規(guī)的軟件開(kāi)發(fā)測(cè)試培訓(xùn)機(jī)構(gòu)
數(shù)據(jù)分析適合女生嗎?職業(yè)發(fā)展前景在哪里?
數(shù)據(jù)分析師的前景如何?從業(yè)者經(jīng)驗(yàn)為你分析答案
現(xiàn)在轉(zhuǎn)行學(xué)開(kāi)發(fā)還有前景嗎?
廣州大數(shù)據(jù)技術(shù)主要學(xué)什么
數(shù)據(jù)分析師培訓(xùn)機(jī)構(gòu)有這些